Now secured with DNSSEC

In the last few days, all my web services have been secured with DNSSEC. I have used DNSPod for some time and am pretty satisfied with their service, but after some incidents of failing to resolve for foreign places, I decided to change my DNS service. So my DNS service has been changed, and also secured with DNSSEC.

DNSSEC is a chain of trust service that authorization each DNS reply using asymmetric encryption. It starts from the top-level CA, which is “.”, and then some gTLD, like “org.”, and then the register’s domain. It’s a signing only method, so the DNS request is not encrypted and can be cached. The weakest point is that your domain registrar has total control over the DNSSEC key so that if your domain registrar wanted to change it to another thing, it would be done. Also, the encrypted key of “.” and “org.” is both 1024 bit RSA, so there may be some possibility to break it using a really big supercomputer within expire time. (there is about 1.47% possibility that you can break a 1024bit RSA key using Tianhe-2 under six month)

It’s a good way to prevent DNS poisoning. With DNSSEC, the most respectable mail service(Google) will not be fooled by easy tricks to send the email to some MIMA server. Also, if the client’s DNS service is secured under DNSSEC, the client will not be fooled to another site.
However, there is little ISP that does the right DNSSEC check inside China. One famous DNS provider inside china, 114DNS, has exactly zero aware of DNSSEC. And if the DNS record is signed with the wrong key, the 114DNS will not care and just return the malicious result.
So I set up three DNS servers to do the right DNSSEC check. One for my personal network(mail/VPCC/wiki/gitlab/backup/LDAP/WebDAV…) and another for my personal VPN. The two DNS servers using another DNS server as a cache. Now the weakest spot is that before I start my VPN, the DNS is poisoned. However, as my VPN is secured using another set of RSA keys, and I never visit anywhere without my VPN on, it should be fine.

With DNSSEC, I can now have my keys published using DNS. Now my GPG key for [email protected] can be auto-fetched if the DNS search is enabled. The weak point is that the DNS search function is not capable of verifying DNSSEC at peer but relies on the remote resolver. RFC4035 seems to be suggesting any client with the ability to check DNSSEC to check DNSSEC by itself. I believe GnuPG is a client that has the ability to check DNSSEC and should have checked DNSSEC. Without that function, anyone can just modify the UDP package between the resolver and the client to give the client any key the attacker likes. A temporary solution would be setting up a DNSSEC capable resolver at the localhost and dig from 127.0.0.1:53.

Whatever, having it is better than having nothing. But still, if you want to send me encrypted emails, see about page on this blog and using keys there, or make sure you are doing DNSSEC check at localhost…

Perfection is death

Being perfect is good. But trying to be perfect is just a death sentence to anyone.

There is no perfection

In the theory world, there is a top for anything, and you can reach perfection just by spending enough. It’s always true that a project’s quality is linearly boosted as time spent. However, it’s not. Just like speed, you can reach a certain speed easily by accelerating for a certain time, but if you want more speed, more accelerating time/energy is just useless. You can never reach c even if you spend an infinite amount of time and an infinite amount of energy. It’s the same in any project. You can get to a certain quality level with a certain amount of time in the beginning. However, no matter how long you spend, it’s never perfect.

We use the backup project as an example to explain it in detail. First, we define the perfect state of a backup project:

  • No one can access the backup data except the owner
  • The owner will never lose any useful data because of the backup

First, it’s something that can be easily done. You write a script to diff the data, divide data into small s3 objects, GPG encrypt it and sign it, then send it to Amazon Glacier. Just some lines of script, easy.

But when you put it into your crontab, you find something is missing. It’s not a perfect backup scheme. The data can be lost if you accidentally deleted it when you are between the backup cycle. It’s not tolerable! But you can still solve it. So you write a service, and then go into your kernel source tree, open the fs/open.c, patch the kernel, restart the system, and find not all calls are good. So change more sources, patch the kernel, restart the system, and again, and again…

You think you have a perfect solution now. Every time you write the file, it will immediately transfer to Glacier; Even before the file reaches the disk from the cache, it has already safely in the cloud. No way to lose data now.

But the problem can always arise. It’s still a long way to perfection. What if Amazon bankrupt? Easy, add the backup to Aliyun; What if your backup GPG key is lost? Print the encrypted version and post it anywhere; What if the network is down? Write another service to do a watchdog job and beep loudly whenever a backup fails. Beep is of course, not perfect. You need to have two private network lines to Amazon and Aliyun just to provide stable networking, so you buy AWS Direct Connect and some fuck network setup for Aliyun. But it can still fail, so you build an automatic program to call Amazon and Aliyun to fix the private line when it finds the line is broken.

Yeah, you have a perfect backup solution. But no?

It’s still far, far away from being perfection.

What if RSA is not secure? You need a private asymmetric encrypt method to make sure it’s safe(I use VXEnc~). What if your important idea is lost when typing in TTY? Patch kernel again and add keystream backup. What if kernel panics? Rewrite the kernel to perfect so that to make it never panic.

But it’s still far away from being perfection.

You still need to write a git-like branch system to manage the backup-restore history, you need to store every object’s travel history, and you need to ensure the network is good once again. Add another several providers. And you need a local offline copy, so you build a service that’s just like Glacier. You need perfection, and Earth has a possibility to nuclear war(0.7% for average given year, it is said), 0.7% data loss rate? Not tolerable! So you need to build the world’s biggest rocket launch station to send out backup copy in real-time as you save a file. But it still needs much more improvement to keep it secure in space.

 

You see, it can never complete.

 

I spent about 2 hours to finish the first step, but much more time has been spent since then, and I have never finished all the things on the list yet. I believe much more can be done, just to make the simple two requirement successful:

  • No one can access the backup data except the owner
  • The owner will never lose any useful data because of the backup

I developed a feeling that even all human beings spend all their life just trying to finish such a simple backup task perfectly, they will fail. Even if all human generations, one after another, spent infinite time on this simple data backup project, they will not achieve perfection.

There is no perfection.

 

There can always be perfection

Though in reality, there is no perfection, you can always find some better ways for anything. You can always find something you can do to make your project better. Since there is the internet, you can receive far more information than your ancestors. They may live in a dreamland that they have done everything perfectly even if they can’t be sure whether or not their house can stand over the next storm, but you can’t. You will always receive information about how to make something better. That information tends to make you believe it’s easy and simple to build a better place. Your knowledge is improved than your ancestors, and your ability enables you to do things that will help your project to perfection. And your brain refuses to believe anything is finished until it is perfection.

The smarter you are, the harder to lie to your brain. If you are good enough, you may find all the things that you have joined are marked as undone.

Modern lifestyle is a helper for this crisis. In the good old time, you can know when you finished work. When you make bottles for sale, you make bottles, even though they are imperfect, you will not spend time to think that you should rob it from your customers to make it more perfect. When the bottles are out of your hand, it has finished, no more headache.

But modern days, you are a worker with multiple projects. You can not finish a part of the project and marked it as done. As you can always make changes to that part, you will always try to make it perfect. As long as you have access to that part, it is never marked as done.

As a human, you will have the Zeigarnik effect whenever there are things undone. When all things are never done, you will be mad. Everyone feels that madness in modern society. People want to do things, but they can’t, as there are many other things to do. They want to do A, but there are BCDEFGHIJ; They want to finish B, but there are ACDEFGHIJ, and much more clearly shined in their brain than B because of Zeigarnik effect. They decide to finish J first, but their brain keeps thinking of ABCDEFGHI. They decide to start a perfect timetable with a perfect J, and J will never finish as there is no perfection.

In the end, they finish nothing.

But still, ABCDEFGHIJ is in their brain. They need to do it. So they browser the internet trying to find something for B and find a good way to solve part of C, they did it, and remember B is not even started. Guiltily, they close the computer, see the To-Do list, and find the H, trying to do it in 5 minutes, and mobile phone rings.

Do you ever have the feeling that you have done nothing after a tiring day?

Don’t you?

Henry Ford invented assembly lines to save the worker from low efficiency. Some textbook says assembly lines improve efficiency by letting everyone do the repeated task. However, it’s not entirely true. Assembly lines improve efficiency by letting workers forget about their previous product and focus on the current one. An experienced car master can easily build a car from raw metals if he wants, but even in every detail he is more experienced than assembly workers, he will never reach 1/5 efficiency of a man in an assembly line. He can build a car in 10000 hours with all the tools a worker has, but 1000 workers can do the same thing in 1 hour.

It’s not because he is not experienced. Even the assembly line is filled with fresh new workers. Everyone can be much more efficient than the lonely car master.

It’s because he can touch his product even when a part is finished.

The only solution to this problem is a Freeze and GTD lifestyle. For every single project, it should be a test, which tells you whether the project is finished. If a test is passed, even your guts tell you the project is in a mess, and you should never touch the project again. It’s finished. Not only so, but it’s also frozen. In a preset period, you shouldn’t do anything to improve the project even if you do want to improve it. Do a new project after the period if you still remember the project. But never think of the project when it is finished, as it will never be on your list again.

Have you heard it somewhere? It seems familiar? Yes, it’s TDD. You write more production code every day (exclude test) in TDD is not because your time is magically doubled, it’s because your code can be anything, ANYTHING, as long as it passes the test. Whenever some code passes the test, you will not and should not review it. It’s a way to fight Zeigarnik effect, just like the assembly line.

If you can always focus on your topic, you will have 5~10 times performance boost. It is verified data. Assembly lines make workers focus, and 10x performance is seen. Good TDD makes programmers focus, and for some programmers, 100x performance is seen. You can also have this performance boost happen in your daily life, just do like you are in an assembly, and you will be fine.

 

danger to HTTPS, doom to SPDY

Since the BREACH attack, it seems that there is no way to transport content securely in the HTTP world.

The BREACH arrack is an HTTP version of CRIME, which recovers encrypted messages by analyzing the compress ratio of different media. It is well-know that people can see distinct pictures from the text by the compress ratio; however, before CRIME, there is no easy way to detect what exactly the information is by the ratio only. But the breach always exists. The word “faster” and “sunoru” have the same length. However, the entropy(binary) of “faster” is 2.58496, and the entropy of “sunoru” is 2.25163. So, if you know the original length(6) of the words, and also get access to the entropy of the words, you can easily obtain rich information from the results. For a “perfect” compress algorithm with an observe-only way to get information, you can get how much time different alpha is included in each word, which, generally, is not so useful(But shouldn’t be public even so). But real-world compress algorithm is NOT perfect, and real-world environment is NOT observed only. You can send a message to the server to determine which real-world compress method the server is using, and you can obtain much more information form the simple ratio if multiple requests are made by the CRIME attack.

For HTTPS, it represents a danger for web pages with simple information. For example, some banks in China using a number in a picture to show how much money you have, when the picture is compressed, it is pretty easy to obtain the real number the picture shows by compress ratio. By using a precomputed table, you can decrypt millions of those “money pictures” per second with a Macbook Air. So if you find your bank is transport money number in the picture, you should be aware it may be a deliberate way to publish that information to the whole net.

However, for SPDY, your app may be cracked even without deliberate setups. SPDY’s speed is based on compressed headers, which include URL, cookie, and authorization token. As the client will send the header wherever people visit the same site, you just need to XSS the client to a static page(e.g., a 404-page ~), then you can obtain all the information in the header without any painful struggle. And when you get the header, you get the URL(so the complete browsing history is public), the cookie and authority token(so the log-in status of the personal), and all the content of the page. So, it’s just like that you are visiting the page using HTTP without S.

Not only HTTPS and SPDY are effected, Tor, which uses gzip as it’s compression algorithm, is also affected. But it may be not so easy to crack Tor as it reuses TCP tunnel… SSH with compress can also be decrypted this way. However, it needs some small skill and luck to do the gzip guess as you cannot easily make the user resend things.
In conclusion, SPDY is just like clear text for a careful attacker, and HTTPS is not so secure anymore…

The good news is that the network working group finally finds the danger in compression, and decides not to support compression any more in TLS 1.3 draft-02. Have I said that is good news? It seems not like a pleasant change for those who only have limited network bandwidth…

HTTPS SNI

SNI means Server Name Indication, which is a technology to let the server know which domain the client is linking to and return the certification correspondingly, which makes a single IP possible to serve multiple HTTPS sites. It is defined in RFC 6066 section 3.

The protocol extension changes the handshake process in the TLS. The client should include a struct array of the DNS name of the server the client wants to link to. And if the server has the certification, the handshake goes on normally. If not, the server should send a fatal level error and drop the connection, or just go on as if nothing happened(and give out the default certification).

The protocol also influenced the session cache of the TLS server. The TLS server which supports the extension will never give out any session to the client if the server_name mismatches. Even if the client has all the outer things qualified.

Some people think that SNI will add security risks as the client will transport the server name in cleartext. However, if a site is a TLS site(without SNI), anyone can know who the client is talking to by linking to the server. Essentially means the IP in traditional TLS servers gives out the information of the domain. Telling the domain will not add security risk to the protocol.

In fact, as the protocol provides another way to check session cache, it actually reduces the risk(though seems impossible&useless already in traditional TLS server) if the server uses the wrong TLS session which is opened by an attacker to send message to the user.

Now lab to 6.5

After altering some files in gitlab, the upgrade process becomes not an easy and happy job. Every new version comes out, dozens of files need to merge manually in order to upgrade gitlab successfully. So, after hours of mental struggle, I finally decide to upgrade it. The process is not as terrible as I thought it would be. But still, DOZENS of files to edit……

And now the update process has been finished. All things seem to be good. If anything went south, please email me~

Is Meg Jay Right?

In Meg Jay’s New York Times article “The Downside of Cohabiting before Marriage” publishes on April 14, 2012, the author suggests that cohabiting may not be a good factor in marriage like many people assume, actually, it may enlarge the possibility for couples to divorce after marriage. She argues that cohabiting couples may just slide into marriage without serious conversations about why they should live together, and, unfortunately, people’s standards of a live-in partner are lower than their standards of a spouse in most cases, which leads to unhappiness after marriage and therefore enlarges the risk of divorcing. Meg also suggests that people may have different views toward cohabiting: Women are more likely to think cohabiting as a step towards marriage, while men are more likely to see it as a way to test a relationship. These asymmetry ideas may lead to low quality of understanding and may eventually lead to the break of a marriage. She argues that cohabiting is filled with high switching cost, which may make people be “locked in” by cohabiting, and miss their true love because of it. Finally, Meg concludes that because of the high risk of cohabiting before marriage, young people should discuss the commitment level and motivation before sliding into cohabiting to prevent the cohabitation effects.

Unfortunately, there aren’t many real examples in Meg’s article, and the examples Meg gives in her article do not support her conclusion solidly. Firstly, she suggests that there are some risks lie in cohabitation itself, and gives examples which show that heedless cohabitation which leads to unhappy life and eventually leads to break up of the relationship. However, all those examples only suggest that a heedless relationship will end badly, which is a common knowledge. So that those examples are not incontrovertible evidence of the risks lie in cohabitation. She also mentions in her article that cohabitation is loaded with switching cost, which makes it difficult to break up and finds a more suitable partner. But in fact any close relationship will bring switching cost, and will make people have a hard time to make right choices. It is true that cohabitation is hard to break up, but breaking up a marriage is even harder. In this case, I believe marriage is even more dangerous than cohabitation. The author assumes that a never-breaking marriage is the ultimate goal. However, this is a false supposition. There are many stories about unhappy couples who live together for lifelong time. They waste all their life to endure each other, and miss all the opportunity to find a better partner. It’s more tragic than those who divorce and then find a better partner. So that I think a right partner is much better than an unbreakable marriage.

As for the statistic, she suggests that there are some researches which show that couples who have cohabiting experience have a higher divorce rate than those who have no cohabiting experience. However, she fails to give us the exact numbers. But according to a longterm research carried out by U.S. government which has a sample base of 22682 people, the couples who have cohabitation experience have a divorce probability of nineteen percents, and the probability of divorce for those who did not have cohabitation experience is twenty percents. So, according to this research those couples who cohabit before marriage are not more likely to get divorce. Because of the fact that most cohabiting couples are more open-minded compare to those who have no cohabiting experience, they are more open to choose divorce if their marriage doesn’t work out. So the lower possibility of divorce actually suggests that couples who cohabit before marriage have a better marriage quality than couples who do not. And there is indeed a research that shows cohabitors who marry report greater happiness, fewer disagreements, and less instability in their unions and are more able to resolve their relationship conflicts through nonviolent means. So that I believe that cohabiting experience may help people live a better life after marriage.

In her article, Meg Jay has given us some evidence which cannot fully support her ideas. The real world statistics also suggest that cohabitation may have a good effect on marriage. Therefore I believe “Cohabitation Effect” only exists on some special clients of Meg Jay. For most other people, cohabitation actually has a good effect.

Television-Driven Social Revolution: The Box Behind a Stormy Age

The 1960s is one of the most interesting period in American history. In that period the American new generation creats a new culture which never existed before.  It brings the liberty, some creative art styles, along with some extreme violence. It is an age of selfishness and extreme. No one knows why all these would happen. However, a possible reason of the stormy sixties may be the wide deployment of televisions.

In mid-1950 , the U.S. has become increasing urbanized, and the modern technology has gone everywhere from urban to suburban area. Televisions are widely deployed across all American homes by 1960s. Virtually every home has one television set at that point of time. People, for the first time in the history, are able to see what was happening all around the world while sitting comfortably in their sofas. While people spending more and more time watching television shows, a new culture based on television raises naturally.

At first, the television is nothing more but a radio with the function of transport image. However, with the rapid developing of TV industry, people has found more and more ways for televisions to extend into people’s lives. In 1960s, televisions has already conquer all American homes. From news reporting to president election, all of the public events has been shaped by this little box. The candidates go to TV show, debate and advertisement in order to attract the public. Kennedy, which starts as one of the “greenest” candidates in American history, can never win the presidency at the age of 42 without the power of television debate. It is said at that time the candidates’ election groups look like trying to sell president like toothpaste. So that without TV, the idea of “New Frontier” would only be a personal thought of Kennedy, not an idea that influence the next few decades. Televisions also shape many popular cultures. Without TV, Elvis Presley’s music would not affect such a big audience; Hippies would not lead to a nationwide stream of counterculture movement. Televisions are the beacon network that spread the fire of human right movement. Martin Luther King may not be able to draw so much attention and take such a big step to the change of American society. Malcolm X can hardly reach so many people if all he could do is speak to people face to face. It is television that makes all those revolutions possible.

The television might not be the most obvious factor in 1960s revolution, but the television is surely the root that supports the revolution’s blossom. With televisions, information can spread all across the country vividly. With televisions, moviemaker, music writer, singer and dancer can gain more audience across a wider area. With televisions, reporter can choose more ways to process and spread their news across the entire nation. And, the most important of all, because of the wide deploy of televisions, common people will spend more time on political events, which greatly changes the politics in early 1960s, therefore changes the relationship between government and people, which is the beginning of the revolution. The television changes the way people sell their products, and it also make all the experiments in sex revolution possible to spread, which in turn influence the new generation. In a word, it is the television that kindles the fire of the revolution of 1960s.

SQL’s not end

Today, in a distributed cloud environment, there is no good DB that can have both ACID and SQL support, at the same time keep the performance scale. So, there is NoSQL.

NoSQL means Not Only SQL. It does not means NO SQL. MongoDB-like applications have set up a bad example for its followers. A NoSQL DBMS might not use SQL as its base query language, but it at least should support SQL as a higher layer query language, just like what FoundationDB tries to do. Of course, the problem is ACID with the flexibility of SQL language, which is a rather difficult problem for a sharding DB, who becomes more and more common since cloud computing is conquering the server world. SQL language itself is not difficult to carry out, ACID with the ability to support complex SQL is.

But ACID is a must-have feature in many apps, not only bankers needs ACID, all app developer who wants to make a robust app must have transaction as one of their basic tools. No one can accept an app if it only acts normally when the user is lucky. Those who want to throw away ACID will only find they are implementing their own ACID solutions later.

There are many ways to overcome ACID implement problem. In the cloud, locking is an unacceptable way, unless there is some way to lock and sync at a very small, accurate level, which is not an easy job for 100+ sharding servers. Log and check(MVCC) is another way, which is easier than locks, and implemented in many DB solutions.

If ACID is possible in a cloud, SQL will be, too. But it may exist as a layer on an ACID system based on some simpler API. Whatever, SQL will not be ended by NoSQL and cloud, it will still be used in many places for whoever wants to keep data update easy(or even possible). Maybe one day there will be only copied and not reference in DB world, but I think the day has not come yet.

Book review homework

“Pride and prejudice” is an impressive classical English literature that tells a story about the relationship around the dutiful Jane, the quick-witted Elizabeth, the rich gentleman Darcy, and his friend Bingley.

The book tells a story about Darcy, who is the one that split Jane and Bingley because of his worries about their marriage, falls in love with Elizabeth, but is refused by her because of his pride attitude. Mr. Darcy then leaves a letter for Elizabeth in order to explain himself. After some incidents, Elizabeth forgave Mr. Darcy’s pride, and her prejudice disappeared. She accepts Mr. Darcy’s marriage proposal, and they live happily ever after.

It’s a book full of charm in which the author has picturized the capitalist society of England during the seventeenth century, in which people’s life was controlled tightly by the money and status. But the author selected a unique view, which showed people that below the cold surface of a man, there could be a warm heart. The story is awesome and full of surprises. And though it, we can find the power of true love can never be stopped by pride, prejudice, or any other thing. It will always surpass those emotions and finish their purpose.

DoS defense

Now, this site is free from small DoS attack. I use iptables, evasive, and some other techs to protect this site. Iptables will kill most DoS links after it reached some condition. I think any DoS attacker with only one IP can’t flood my site now. Cheers!